WHEN IDEAL-BASED ZERO-DIVISOR GRAPHS ARE COMPLEMENTED OR UNIQUELY COMPLEMENTED

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On zero-divisor graphs of quotient rings and complemented zero-divisor graphs

For an arbitrary ring $R$, the zero-divisor graph of $R$, denoted by $Gamma (R)$, is an undirected simple graph that its vertices are all nonzero zero-divisors of $R$ in which any two vertices $x$ and $y$ are adjacent if and only if either $xy=0$ or $yx=0$. It is well-known that for any commutative ring $R$, $Gamma (R) cong Gamma (T(R))$ where $T(R)$ is the (total) quotient ring of $R$. In this...

متن کامل

on zero-divisor graphs of quotient rings and complemented zero-divisor graphs

for an arbitrary ring $r$, the zero-divisor graph of $r$, denoted by $gamma (r)$, is an undirected simple graph that its vertices are all nonzero zero-divisors of $r$ in which any two vertices $x$ and $y$ are adjacent if and only if either $xy=0$ or $yx=0$. it is well-known that for any commutative ring $r$, $gamma (r) cong gamma (t(r))$ where $t(r)$ is the (total) quotient ring of $r$. in this...

متن کامل

κ-Complete Uniquely Complemented Lattices

We show that for any infinite cardinal κ , every complete lattice where each element has at most one complement can be regularly embedded into a uniquely complemented κ-complete lattice. This regular embedding preserves all joins and meets, in particular it preserves the bounds of the original lattice. As a corollary, we obtain that every lattice where each element has at most one complement ca...

متن کامل

Zero-divisor and Ideal-divisor Graphs of Commutative Rings

For a commutative ring R, we can form the zero-divisor graph Γ(R) or the ideal-divisor graph ΓI(R) with respect to an ideal I of R. We consider the diameters of direct products of zero-divisor and ideal-divisor graphs.

متن کامل

On L-ideal-based L-zero-divisor Graphs

In a manner analogous to a commutative ring, the L-ideal-based L-zero-divisor graph of a commutative ring R can be defined as the undirected graph Γ(μ) for some L-ideal μ of R. The basic properties and possible structures of the graph Γ(μ) are studied.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Electronic Journal of Algebra

سال: 2017

ISSN: 1306-6048

DOI: 10.24330/ieja.296332